Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Viruses ; 14(6)2022 06 13.
Article in English | MEDLINE | ID: covidwho-1911626

ABSTRACT

In the last few years, the sudden outbreak of COVID-19 caused by SARS-CoV-2 proved the crucial importance of understanding how emerging viruses work and proliferate, in order to avoid the repetition of such a dramatic sanitary situation with unprecedented social and economic costs. West Nile Virus is a mosquito-borne pathogen that can spread to humans and induce severe neurological problems. This RNA virus caused recent remarkable outbreaks, notably in Europe, highlighting the need to investigate the molecular mechanisms of its infection process in order to design and propose efficient antivirals. Here, we resort to all-atom Molecular Dynamics simulations to characterize the structure of the 5'-untranslated region of the West Nile Virus genome and its specific recognition by the human innate immune system via oligoadenylate synthetase. Our simulations allowed us to map the interaction network between the viral RNA and the host protein, which drives its specific recognition and triggers the host immune response. These results may provide fundamental knowledge that can assist further antivirals' design, including therapeutic RNA strategies.


Subject(s)
COVID-19 , West Nile Fever , West Nile virus , 5' Untranslated Regions , Animals , Antiviral Agents , Humans , Immune System , SARS-CoV-2/genetics , West Nile virus/physiology
2.
Molecules ; 27(10):3256, 2022.
Article in English | ProQuest Central | ID: covidwho-1871385

ABSTRACT

DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomic instability. In this article we show, by using classical molecular simulation techniques, that compared to canonical double-helical B-DNA, guanine-quadruplex (G4) arrangements show remarkable structural stability, even in the presence of two strand breaks. Since G4-DNA is recognized for its regulatory roles in cell senescence and gene expression, including oncogenes, this stability may be related to an evolutionary cellular response aimed at minimizing the effects of ionizing radiation.

3.
Chem Commun (Camb) ; 58(13): 2176-2179, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1642026

ABSTRACT

2'-5'-Oligoadenylate synthetase 1 (OAS1) is one of the key enzymes driving the innate immune system response to SARS-CoV-2 infection whose activity has been related to COVID-19 severity. OAS1 is a sensor of endogenous RNA that triggers the 2'-5'-oligoadenylate/RNase L pathway. Upon SARS-CoV-2 infection, OAS1 is responsible for the recognition of viral RNA and has been shown to possess a particularly high sensitivity for the 5'-untranslated (5'-UTR) RNA region, which is organized in a double-strand stem loop motif (SL1). Here we report the structure of the SL1/OAS1 complex also rationalizing the high affinity for OAS1.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Immunity, Innate , RNA, Viral/metabolism , SARS-CoV-2/genetics , 5' Untranslated Regions , Base Sequence , Binding Sites , COVID-19/pathology , COVID-19/virology , Humans , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/isolation & purification
4.
J Phys Chem Lett ; 12(42): 10277-10283, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1469948

ABSTRACT

Guanine quadruplex (G4) structures in the viral genome have a key role in modulating viruses' biological activity. While several DNA G4 structures have been experimentally resolved, RNA G4s are definitely less explored. We report the first calculated G4 structure of the RG-1 RNA sequence of SARS-CoV-2 genome, obtained by using a multiscale approach combining quantum and classical molecular modeling and corroborated by the excellent agreement between the corresponding calculated and experimental circular dichroism spectra. We prove the stability of the RG-1 G4 arrangement as well as its interaction with G4 ligands potentially inhibiting viral protein translation.


Subject(s)
COVID-19/genetics , G-Quadruplexes , Genome, Viral , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/virology , Humans , Models, Molecular , Nucleic Acid Conformation
5.
Phys Chem Chem Phys ; 23(40): 22957-22971, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1462045

ABSTRACT

The identification of chemical compounds able to bind specific sites of the human/viral proteins involved in the SARS-CoV-2 infection cycle is a prerequisite to design effective antiviral drugs. Here we conduct a molecular dynamics study with the aim to assess the interactions of ivermectin, an antiparasitic drug with broad-spectrum antiviral activity, with the human Angiotensin-Converting Enzyme 2 (ACE2), the viral 3CLpro and PLpro proteases, and the viral SARS Unique Domain (SUD). The drug/target interactions have been characterized in silico by describing the nature of the non-covalent interactions found and by measuring the extent of their time duration along the MD simulation. Results reveal that the ACE2 protein and the ACE2/RBD aggregates form the most persistent interactions with ivermectin, while the binding with the remaining viral proteins is more limited and unspecific.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/metabolism , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Ivermectin/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Binding Sites , Coronavirus 3C Proteases/chemistry , Coronavirus Papain-Like Proteases/chemistry , G-Quadruplexes , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ivermectin/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Domains , RNA/genetics , RNA/metabolism , SARS-CoV-2
6.
J Phys Chem Lett ; 11(14): 5661-5667, 2020 Jul 16.
Article in English | MEDLINE | ID: covidwho-1387115

ABSTRACT

Coronaviruses may produce severe acute respiratory syndrome (SARS). As a matter of fact, a new SARS-type virus, SARS-CoV-2, is responsible for the global pandemic in 2020 with unprecedented sanitary and economic consequences for most countries. In the present contribution we study, by all-atom equilibrium and enhanced sampling molecular dynamics simulations, the interaction between the SARS Unique Domain and RNA guanine quadruplexes, a process involved in eluding the defensive response of the host thus favoring viral infection of human cells. Our results evidence two stable binding modes involving an interaction site spanning either the protein dimer interface or only one monomer. The free energy profile unequivocally points to the dimer mode as the thermodynamically favored one. The effect of these binding modes in stabilizing the protein dimer was also assessed, being related to its biological role in assisting the SARS viruses to bypass the host protective response. This work also constitutes a first step in the possible rational design of efficient therapeutic agents aiming at perturbing the interaction between SARS Unique Domain and guanine quadruplexes, hence enhancing the host defenses against the virus.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/genetics , Coronavirus Infections/virology , G-Quadruplexes/drug effects , Pneumonia, Viral/virology , RNA, Viral/chemistry , RNA, Viral/genetics , Betacoronavirus/drug effects , COVID-19 , Dimerization , Humans , Models, Molecular , Molecular Dynamics Simulation , Pandemics , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
7.
J Proteome Res ; 19(11): 4291-4315, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960292

ABSTRACT

The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies.


Subject(s)
Antiviral Agents , Coronavirus Infections , Drug Design , Molecular Docking Simulation , Pandemics , Pneumonia, Viral , Spike Glycoprotein, Coronavirus , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , Molecular Dynamics Simulation , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Internalization
8.
J Phys Chem Lett ; 11(21): 9272-9281, 2020 Nov 05.
Article in English | MEDLINE | ID: covidwho-882858

ABSTRACT

Since the end of 2019, the coronavirus SARS-CoV-2 has caused more than 1000000 deaths all over the world and still lacks a medical treatment despite the attention of the whole scientific community. Human angiotensin-converting enzyme 2 (ACE2) was recently recognized as the transmembrane protein that serves as the point of entry of SARS-CoV-2 into cells, thus constituting the first biomolecular event leading to COVID-19 disease. Here, by means of a state-of-the-art computational approach, we propose a rational evaluation of the molecular mechanisms behind the formation of the protein complex. Moreover, the free energy of binding between ACE2 and the active receptor binding domain of the SARS-CoV-2 spike protein is evaluated quantitatively, providing for the first time the thermodynamics of virus-receptor recognition. Furthermore, the action of different ACE2 ligands is also examined in particular in their capacity to disrupt SARS-CoV-2 recognition, also providing via a free energy profile the quantification of the ligand-induced decreased affinity. These results improve our knowledge on molecular grounds of the SARS-CoV-2 infection and allow us to suggest rationales that could be useful for the subsequent wise molecular design for the treatment of COVID-19 cases.


Subject(s)
Betacoronavirus/metabolism , Ligands , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Binding Sites , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Diosmin/chemistry , Diosmin/metabolism , Humans , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Plicamycin/chemistry , Plicamycin/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL